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On Solving Weakly Singular Volterra Equations 
of the First Kind with Galerkin Approximations 

By John M. Bownds 

Abstract. The basic linear, Volterra integral equation of the first kind with a 

weakly singular kernel is solved via a Galerkin approximation. It is shown that the 

approximate solution is a sum with the first term being the solution of Abel's equa- 

tion and the remaining terms computable as components of the solution of an initial- 

value problem. The method represents a significant decrease in the normal number of 

computations required to solve the integral equation. 

The principal goal here is to show that under typical assumptions on k and f the 
first kind integral equation 

(I) ~f(x) = Ok(x, t) (x - t)-ut dt < x < 1, O < ae < 1 

can be efficiently solved numerically by using a Galerkin approximation which, essen- 
tially, converts the equation into an initial-value problem and approximates the solu- 
tion as a perturbation of the solution of the classical Abel equation (k 1). This 
method, because of the associated significant decrease in computations, relative to 
other numerical methods, can have the advantage of greater computational speed but 
the disadvantage of possible increased error. The references supporting these initial 
comments are found in specific context below. 

We assume the usual conditions which imply that (I) has a unique, continuous 
solution on [0, 1], namely that k(x, t), 3k(x, t)13x, andf'(x) are continuous on their 
respective domains, and k(x, x) # 0 for any x E [0, 1]; see [1], [2]. Without loss, 
we take k(x, t) = 0 if x < t. This existence theory essentially uses the fact that under 
these assumptions, (I) is convertible to an equation of the second kind. If k(x, x) 
= 0 for some x but aPk(x, x)/3xP never vanishes for some p > 0, then certain obvious 
modifications produce the same existence and uniqueness result, the point being that 
(I) is still converted to a second kind equation to which the usual fixed point methods 
can be applied. We assume that f(O) = 0 and note here that, unfortunately, the 
smoothness assumption on f is troublesome for some applications involving discrete 
data; however, this is the same objection which arises with the original Abel inversion 
of (I) when k 1. See [3] for a modification of the usual inversion which does not 
explicitly involve f'. The equivalent second kind equation is as follows. 

LEMMA. Under the above assumptions on k and f, Eq. (I) is equivalent to the 
second kind equation 
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(II) u(x) x sin F F (x t) f(t) dt + K(x t)u(t) dtl 
7rk(x, x) ldx OJOj 

where 

(1) K(x, t) = -JO (1 - w)'- 1wk1 -ek (t + [x - t] w, t) dw; 

here k1 denotes differentiation of k with respect to its first argument. Equivalence, 
of course, means the two equations have the same solutions on [0, 1]. This conver- 
sion is fairly routine and the actual details are not repeated here. 

The approach here is to look for a solution of (I) in the form of a certain sum, 
the first term of which is the solution of Abel's equation (k 1) given by the usual 
inversion. The remaining portion of the proposed solution is formed by solving an 

initial-value problem; this can represent a major economy due to the excessive number 

of kernel evaluations (0(N2)), where N is the number of tabulations of the solutions 
encountered in the methods of [1], [4], [5], [14]. This approach has been taken 
previously in [6], [7] where the main results center on a study of the trade-off be- 

tween kernel approximation methods, accuracy, and number of computations required 

to solve second kind Volterra equations with continuous kernels. A generalization of 

the basic conversion to initial-value problems in [6] -[8] to include Fredholm equa- 

tions of the second kind is accomplished in [9], again for continuous kernels. 
Let _0j}i be a complete, continuous, orthonormal system in L2(0, 1). We 

seek an approximate solution of (I) of the form 

(2) un(x) = sin x) dx f(x - t) '`f(t) dt + Z q>1(x)y1(x), 
7rk(x, x) dxj= 

where the functions y, are to be selected in such a way that the error given by 

(3) 5n(x) = Un(X) - sin 7ak -[ lf(x - t) 1f(t)dt + 0 K(x, t)un(t)dtl 7rk(x, x)L)'ftd?j0X nj 

with K as in (1), is orthogonal to the first n basis functions. 
THEOREM 1. With the present assumptions, if col(y1, Y2 Yn) satisfies 

the initial-value problem, 

(4) 4(x) = 1j(x)un(x), 0 < x S 1,- y1(O) = 0, 

where 

(5) 4's(x) = - ira 101 P(s)(k(s, s))-(1 - w)0`1 wl -'k1(x + [s - x] w, x) dw ds 

and Oil un are as above, then (6n 5,01) = O for 1 S I S n; k, again denotes differentia- 
tion of k(x, t) with respect to x. 

Thus, un is a Galerkin approximation to the solution of (1) provided (4) holds. 
For linear Fredholm equations of the second kind, the yj's are constants; and the meth- 

od is then also referred to as the "method of moments" [10] . Also, in analogy with 
the classical, linear Fredholm theory [10], [11], Eq. (5) gives the jth coefficient in the 

Fourier approximation 
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K(x, t) sin 7ra n 

k(x, x) 7r 

where K is given by (1). Since this Fourier approximation to K is not necessarily most 
efficient for actually computing the solution of (I), we will prove Theorem 1 as a cor- 
ollary of the following where we are not as specific about the particular form of the 

approximation. The theoretical expense is that (65 01) is not zero but, rather, a mea- 
sure of the deviation of the coefficient ip(x) in (6) below from the above Fourier co- 

efficient. 

Let K(x, t) be given by (1) and assume 

K(x, t) sin 7ra n 
(6) 7rk(x, x) = E qj(x)0j(t) + en(x, t), 0 S t < x < 1, 

1=1 

where 4j, j = 1, 2, . ., n, are continuous on [O, 1] . Notice that since k(x, t) = 0 if 

x < t, (1) implies K(x, t) also vanishes there. We assume that both terms on the right- 
hand side of (6) vanish for x < t. 

THEOREM 2. Let un be given by (2) where col (y1, Y2 Yn) satisfies (4) 
with 4' replaced by 4j, j = 1, 2, ... , n. Then 

(7) (65 ) = .QEi(t)un(t)dt, 1 < 1 < n, 

where 
sin 7ra 1 Ob1(x)K(x, t) ? S t S 1. 

E1(t) = ip1(t) - Jr kx )0--t<I 

Evidently, one might reasonably expect that the approximation used in (6) may 
produce a better approximate solution to (1) if the magnitude of the right-hand side 
of (7) is as small as possible. Of course, computationally this may not be particularly 

easy to verify but it does pose an interesting variational problem. In any case, as we 
will now see, if en in (6) is uniformly small, then un is near the actual solution; and 
so, un is bounded. Also, we record here that 6n is equivalent to the absolute error 

(lu - un 1) induced by an approximation. We remark here that if en 0 (exact de- 

composition), then it is easy to see that un u, this being true without orthonormal- 
ity requirements for 01, 02 5 ... , n- 

THEOREM 3. Let un ,n, and en be as in (2), (3), and (6) respectively; let 11-11 

denote the usual sup norm on [0, 1]. Then 

(i) Ilu - unll +O 4} llnll - > as n -- oo, and 

(ii) llenll ? 0 Il 
- 

Unll >O as n >oo; 

here IIenl = sup{len(x, t)I; 0 S t Ax < 1}. 
Regarding an estimate on how large the combined truncation and approximation 

error might be, at worst, since (I) is equivalent to a second kind integral equation, 
rough a priori error estimates are fairly easy to obtain. Also, however, since the equa- 
tion is linear, the error due to the approximation (6) can be found with increasing pre- 

cision by iteration. These two statements form the content of Theorems 4 and 5. 

THEOREM 4. Let K be given by (1) and approximated as in (6). Assume (I) is 
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to be solved at the points Xk =kh, k = 1,. . , N, xo = 0, xn = 1, by computing 

un(xk) = Uk using (2), where col (yl, Y2,... Yn) solves (4) with the Fourier co- 
efficient 4j replaced by i;j. If (4) is numerically solved with a method which produces 
a truncation error not exceeding axk at xk' then the combined error due to the approxi- 
mation in (6) and this truncation error satisfy 

(8) e(xk) = Iu(xk) - Ukl = O(lIenlI) + ak as lie, II 0 

We note here that this estimate does not include the indicated quadrature in (2). 
THEOREM 5. Let v(x) = uo(x) denote the solution of the approximating equa- 

tion 

(9) w(x) = k( -t) 1f(t) dt + E 0j(x)gj(t)w(t)dt, 

0 < x < 1, and let u(x) denote the solution of (I). Then for m > 2, 

m-1 
(I10) u(x) - i(x) v j(x) + rn(x), O A <x < 1, 

j=1 

and 

n 

vj(x) = 
j(x) ? 5l(x)yi(X), 

ylj(X) = t4(X)[fj(X) + E 0M(X)YMj(X) , 

ylj(?)- =O, 1 =1, 2,..n;j =1, 2,..M - 1, 

rx 

fj(x)-=f en(x, t) v1_1(t)dt, j = 1, 2, . .. , m - 1, 

and llrm 11=O(Cm2/V(m - 2)!) as m - oc; the constant C is the L2 norm of 

sin 7Ta K(x, t) on [0, 1] x [0, 1] 

We take note of the obvious fact that (10) supplies an infinite series for u(x). 
The point here is that the above Galerkin approximation is really just the first term in 
this particular series, and we can refine the approximation by iteration if we desire. 

The proofs of Theorems 4 and 5 are supplied in abbreviated form below due to 

the fact that they have been given elsewhere [61, [71 . Before getting to the details of 
the first three theorems, we reconsider the approximation (6). 

Regarding practical considerations for performing the above calculations, the par- 
ticular approach taken in a given problem will depend on the properties of the original 
kernel k. It may, for example, be appropriate to use V/1, given by (5), in the kernel 

approximation (6). In this case, a reasonable outline might be to compute 4j(x) using 
Gaussian quadrature as 

1 L 

j((x)= E Hik1(x + [ -xIwi, x)(Q) dt, 
i-1 
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where w1, Hi, i = 1, 2, . . ., L, are zeros and weights associated with the Jacobi poly- 
nomials [12]. This takes advantage of the particular form of the right-hand side of 
(5) in a manner already suggested for Abel's equation in [3]. The remaining integral 
above could, of course, be found using another appropriate quadrature rule, but this 
would be appropriate only if the total number of evaluations of the function k1 can 
be kept much smaller than N2, where N is the number of solution tabulation points. 
The advantage seems to be that 8n is orthogonal to the first n functions of the system 

{li}. 
Alternately, it might be advisable to surrender the insistence that (6) be a Fou- 

rier approximation and simply approximate the function k1 (x, y) with a two-dimension- 
al interpolating polynomial. This approach was used in [6] with reasonable success on 
smooth equations of the second kind. If this function is approximated by any poly- 
nomial as 

n 

k I(X, Y) E aijxiY 
i+j=O 

then, by (1), 

K(x, t) l(1w) wl E aij E: (Zwx)'[t(I -w)] i ti dw, 
f+j=0 1=0 

which is just a polynomial with coefficients which are products of beta functions and 
a& s. The error committed in this interpolation is given in [6]. 

Next, we note that if the kernel in the original equation (I) has a derivative k1 
which decomposes exactly, then the above approximation work is unnecessary. We 
can, in this case find the solution simply by solving a system like (4) and using (2), 
which is then an exact equation for the solution. This case will produce a very accur- 
ate, fast method for solving (I). 

Before showing specific examples, it is noted that all the above development 
uses a > 0. Of course, if a = 0, then the original integral equation has no singularity; 
and the above assumptions on k easily imply that (I) is equivalent to the equation 

U(X) = f'X) - lo k(, u X) U(t)dt; k(x, x) 0 k(x, x) 

and the above results take a much simpler form. 
For examples of the above conversion to an initial-value problem, use will be 

made of examples appearing elsewhere in the literature. The resulting initial-value 
problems below may, of course, be solved with any number of well-known methods. 
After some further work on appropriate approximations, the author intends to investi- 
gate more complicated and relevant numerical examples in the context of Brownian 
motion processes as in [5]. 

Example [14]. The equation 

( o + 41 X4 o= to f+oX4 - t4 h u(t) dt, 0 < X < 1n 

(exact solution: u(x)-1), is of the above form with the simplification that oc = O. In 
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this case the equivalent second kind equation is 

u(x) = 1 + 8x4 - 8X3 xfu(t)dt; 

and so, 

u(x) I + 8x4 - 8x3y(x), 

where 

y'(x) = u(x) = 1 + 8x4- 8x3y(x), y(O) 0. 

Example [4]. The equation 

I + x)x =| (I +xt) (x -t)- /2u(t) dt, 0 < x I 

(exact solution: u(x) = 2Jx/ir), is of the required form for the above lemma, and the 

equivalent second kind equation is 

u(x) = 1{X) r( x20 (fo (1 - w) 12w112tdw) u(t)dt, 

where 

c1(x) = >/(?x(2) (Ifo(1 - w)w'12 dw ? x2fo(1 -w)3w1I2dw) 

_, 
, 

68/ / +X2 
7r(1+ x2)3 5S 

Equation (1) in the above lemma is, in this case, of the form 

K(x, t) = - (1 +2) o (1 - W1 /2W" /2 dw = _ B(1/2, 3/2) (1 + X2)- t 

where B denotes the usual beta function. Hence, since B(1/2, 3/2) = r/2, it is true that 
K(x, t) = - ?(I + x2)-1 t, which is exactly decomposable. In accordance with the 
remark immediately preceding Theorem 3, we have u(x) = cI(x) - ?(I + x2)y(x), 
where 

y'(x) = (Q(x) - (1 + x2)-ly(x))x, y(O) = O. 

Example [4]. The equation 

(2irx)-1/2 exp( +x2) 

= O(2ir)-l/( )l/ exp (-2 (x - t)) u(t) dt, O < x < I, 

[exact solution: 

u(x) = -(2irx)-/2 (exp (- (i+ x)2)( -1 + exp (-2 -1 (1 - x)2)(x + 

when converted to a second kind equation becomes 
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u(x) = I 
-d X(- t) -1/2 t-1/2 exp +2t) )dt 

+ ? f (foexp v (x - t)1(1 - V)1 /2V1 /2 dv) u(t) dt. 

In this case, the kernel is 

K(x, t) = f e-(v12)(x-t)(l - 0-)1/2vl/2 dv, 

which requires some approximation. Notice that this integral can be expressed in 
terms of a confluent hypergeometric function with argument -?2(x - t); in fact, it is 
only a short exercise to show that 

K(x, t) = 2, - (x - t) 

where M is Kummer's function, given by 

M(a. b. z)= (a) Z' (a)j=a(a+l)(a+2) ..(a+j-l) (a)o l; 

see [15, p. 504]. So, the kernel can be written as 

K(x, t) = 7T ( y,(x - t) 
2 

=0 

where 

(3/2)j(- 1/2)1 
ej(2)jj/! 

and this can be written as 

K(x, t) = f x(f (} -t)h l)+ n(x, t). 

If we now express x as a linear combination of 1 orthogonal functions 01 .. . k on 
[0, 1] (such as, for example, shifted Legendre polynomials), then we obtain 

K(x, t) = 2 k Z aJt'jX) 'Y1 jH)(-t)i +? en(x, t) 
1=0 k=O j=1 

=2 , o(kOk(X) E @,I(-t)1 + (X, 
k=O l=k j=I 

for which in applying Theorem 2, we may take 
n n , 

Oj(x) = 'Tajq5(x) and ) (t) = ^ /,M (7)(-t)m 
2 J~~~=j m= \ 

In this case, the approximate solution in Eq. (2) is therefore given by 

Un(x) = (X - t) 1/2t1/2 exp ((-2ti) dt + X pj(X)yj(X), 
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where 

Y (X) = Oj(x)u (X), yp{O) = 0. 

To compute the indicated differentiated integral in this expression, it is probably best 
to proceed as in [31 and compute 

dUx(\l/21/2 ~~(I( + t)2 d Jx (X - t)-1/2t-1 /2 exp(( + dt dx xj xp -2t )d 

i[x exp ((I +?X2) 1 N ((x)-f(x[1 - ui])] 

where f(x) = X-1/2 exp (1 + x)2/- 2x and where the indicated sum 1 to N represents 
the Gaussian quadrature of the integral 

lf(x) - f(x[1 -u] )] u 32du; 

the quantities ui and H, are the respective zeros and weights associated with a special 
version of the Jacobi polynomials. Reference [3] not only contains the details for 
the quadrature but also lists values for u1 and Hi in an appendix. 

Proof of Theorem 2. Since by the lemma, (I) is equivalent to (II), we use (II) 
to calculate in the following way. 

sin ira dC 
-tX-1 ()d ( )n n=fo(u(x)- k x) dx j (x-t)?'f(t)dt 

sin ira 
lK(x, t)n(t) d ,(x)dx 

= fo(?P{x)WY1x) - f0( E 1(x)TPt) + en(x, t)) un(t) dt) 01(x) dx 

= lo ( E (yx(x)-f iP(t)Un(t) dt -fo en(X, t)un(t) dt) Oj(x) dx. 

But, by (4), 

y,(x) = tP1(t)un(t) dt, 0 S x 6 1; 

and so, using (6), we have 

=6n 1 =-fo 4t(x) (f0[K(X () sin)lra ?2 k(x)l{(t)] un(t) dt ) dx 

(f;6l(X)KfX, t) sin ira n 

= 1 x) dx - Jt fI(x) (,(x) dx 4(tP) un(t)ddt. 

Now, because all three terms in (6) are zero when x <t, this can be written as flsn0 r ,k(x)K(x, t)si an- 

l? = JO 17a JO k f(x, x ) dx - t1(t)) ud(t)dt, 

where we have used the orthonormality of the O's and the assumption that 1 6 1 6 n. 
This completes the proof; Theorem 1 follows as a corollary in a straightforward fashion 
recalling (1). 
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Proof of Theorem 3. If fi and Ki are continuous, and 

wi(x) = f(x) + fo K(x, t)w(t) dt, i = 1, 2, 

then if IK1(x, t) - K2(x, t)l e for all 0 6 t 6 x 6 1, it follows that 

1i - w2 11 6 (hlfl - f2 11 + ell W2 11) exp (IlK, 11), 

where IlK1 11 is the maximum of K1(x, t) on 0 6 t 6 x < 1. This follows from an ele- 

mentary application of Gronwall's inequality or any number of treatises on Volterra 
equations; see [13]. Now,the assumptions on K are sufficient to deduce from (3), 
that 116nIl 0 if un - u uniformly in view of (II). On the other hand, if we take 

f(x) = sn x)a dJ (x - t)-lf(t)dt, f2(x) = si(x) +fi(x), 

and K1 K2 K, we see from the above comparison lemma that lI u - un < 
II nI exp (IIKiI), from which the converse follows, and so (i) is proved. 

For (ii), taking fi as above, f2 f1 , 

sin ira Kxt 
K1(x, t) = irk(x, x)K(x t) 

and 
n 

K2(x, t) = Oj(x) ;(t), 0 < t 6 x, 
j=1 

the above inequality implies that 

11 u-un 11 < 11 en 11 exp (11 K1), 

from which the result follows immediately. The proofs of Theorems 4 and 5 are 

given in [6], [7]; however, since these references are not yet in print, they will be at 
least sketched here. 

Proof of Theorem 4. If v(xk) denotes the exact solution at Xk of the approxima- 
ting equation (9), then uk is the numerical approximation of v(xk). This follows from 

the representation theorem in [6], [7] which, basically, asserts that if the kernel in a 

Volterra equation is of the form in (9), then the exact solution is of the form given in 

(2); no approximation is needed. (We are, as mentioned above, not considering the 
error involved in the indicated quadrature in (2).) Then, writing 

e(xk) =u(xk) Ukl Iu(xk) - (xk) + V(Xk) - Ukl 

the result easily follows using Gronwall's inequality together with other routine estimates. 

Proof of Theorem 5. Let u(x) and v(x) solve (II) and therefore (I) and (9), re- 

spectively. Then 

u(x) - K(x) = K(x, t) (u(t) - v(t)) dt + en (x, t)v(t) dt, 

where 

= sin i'rXK(x, t) 
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Letting r, (x) = u(x) - v(x), we see that r1 satisfies the original Eq. (II) with 

sin iTa d (x -l(d 
irk(x, x) d lo (X t)'f(t)dt 

replaced by 

fi (X) = en(x, t)v(t) dt. 

Proceeding in this fashion, defining rm(x) = r,-1(x) - vm,i(x), and f1, vj as in the 
theorem, it is reasonably straightforward to establish (10). 

To complete the proof, we note that for m > 2, 

fm (X) =foen(x, t) [f-1(t) + 0 1Pl(t)Yk,m -(t)]dt, 

from which it can be shown that 

fm (x) = o S(x, t)fm_ (t) dt 

for a certain continuous function S. But this defines a sequence of Picard iterates for 
the equation 

g(x) = S(x, t)g(t) dt, 

which, by the continuity of S, has only g 0 as solution. Thus fm ?- 0 uniformly. 
Then, since rm satisfies 

rm(x) = fm(x) + Jf K(X, t)rm (t) dt, 

it follows that rm 0 uniformly, this again making use of the usual Gronwall or com- 
parison lemma. To see that rm actually satisfies the indicated estimate requires an 
adaption of an argument found in [11, p. 12] ; the main details of this adaption are in 
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